This is a hard one. Because research is such an unstructured task, it's difficult to describe how to do to it (and do it well). I'll try to pull a few key points from
this web site to get started (you'll have to scale a PhD timeline to an MS timeline for SF State):
On doing research in general:"For many new graduate students, graduate school is unlike anything else they've done. Sometimes it's hard to know exactly what it is you're supposed to be learning. Yes, you have to complete a dissertation, but how do you start? What should you spend your time doing? Graduate school is a very unstructured environment in most cases. Graduate students typically take nine hours or less of coursework per semester, especially after the second year. For many, the third year -- after coursework is largely finished and preliminary exams have been completed -- is a very difficult and stressful period. This is when you're supposed to find a thesis topic, if you're not one of the lucky few who has already found one. Once you do find a topic, you can expect two or more years until completion, with very few landmarks or milestones in sight."
On day-to-day activities [my changes are in brackets]:
"You'll have to read a lot of technical papers to become familiar with any field, and to stay current once you've caught up. You may find yourself spending over half of your time reading, especially at the beginning. This is normal. It's also normal to be overwhelmed by the amount of reading you think you "should" do. Try to remember that it's impossible to read everything that might be relevant: instead, read selectively. When you first start reading up on a new field, ask your advisor or a fellow student what the most useful journals.... are in your field, and ask for a list of seminal or "classic" papers that you should definitely read.... Start with these papers and the last few years of journals and proceedings."
I will add that you should subscribe to automatic journal updates (e-alerts) that send you the titles and links to the current month's publications in major journals - start with
AGU,
GSA,
MSA,
Elsevier/ScienceDirect, and
Springer. If/when you publish your research, you will be expected to be up-to-date with current research in your field
. And you may spot a paper that is just what you're looking for...
"Before bothering to read *any* paper, make sure it's worth it. Scan the title, then the abstract, then -- if you haven't completely lost interest already -- [look] at the introduction, [figures], and conclusions. (Of course, if your advisor tells you that this is an important paper, skip this preliminary step and jump right in!) Before you try to get all of the nitty-gritty details of the paper, skim the whole thing, and try to get a feel for the most important points. If it still seems worthwhile and relevant, go back and read the whole thing. Many people find it useful to take notes while they read [directly in the margins of the paper to find relevant points quickly]. Even if you don't go back later and reread them, it helps to focus your attention and forces you to summarize as you read. And if you do need to refresh your memory later, rereading your notes is much easier and faster than reading the whole paper."
Organize papers in folders according to a broad(ish) topic (e.g., microstructures) so that you can go back and find relevant papers easily.
On staying motivated:
"At times, particularly in the "middle years," it can be very hard to maintain a positive attitude and stay motivated. Many graduate students suffer from insecurity, anxiety, and even boredom. First of all, realize that these are normal feelings. Try to find a sympathetic ear -- another graduate student, your advisor, or a friend outside of school. Next, try to identify why you're having trouble and identify concrete steps that you can take to improve the situation. To stay focused and motivated, it often helps to have organized activities to force you to manage your time and to do something every day. Setting up regular meetings with your advisor, attending seminars, or even extracurricular activities such as sports or music can help you to maintain a regular schedule.
Chapman (see [chapman]) enumerates a number of "immobilizing shoulds" that can make you feel so guilty and unworthy that you stop making progress. Telling yourself that you *should* have a great topic, that you *should* finish in N years, that you *should* work 4, or 8, or 12 hours a day isn't helpful for most people. Be realistic about what you can accomplish, and try to concentrate on giving yourself positive feedback for tasks you do complete, instead of negative feedback for those you don't.
Setting daily, weekly, and monthly goals is a good idea, and works even better if you use a "buddy system" where you and another student meet at regular intervals to review your progress. Try to find people to work with: doing research is much easier if you have someone to bounce ideas off of and to give you feedback.
Breaking down any project into smaller pieces is always a good tactic when things seem unmanageable. At the highest level, doing a master's project before diving into a Ph.D. dissertation is generally a good idea (and is mandatory at some schools). A master's gives you a chance to learn more about an area, do a smaller research project, and establish working relationships with your advisor and fellow students.
The divide-and-conquer strategy works on a day-to-day level as well. Instead of writing an entire thesis, focus on the goal of writing a chapter, section, or outline. Instead of implementing a large system, break off pieces and implement one module at a time. Identify tasks that you can do in an hour or less; then you can come up with a realistic daily schedule. If you have doubts, don't let them stop you from accomplishing something -- take it one day at a time. Remember, every task you complete gets you closer to finishing."
It is very important to make regular progress (i.e., each week). Keep track of how you spend your time: if you are a TA, spend no more time on those tasks that you are paid for (normally 10 hours per week). Your classes should take up another ~25% of your time (because coursework is not the focus in graduate school). You should be spending about 50% of your time "doing research". This should all total at least 40 hours per week, particularly if you want to complete your graduate research within a fixed period of time (2-3 years for an MS, 4-6 years for a PhD). So that translates into at least 20 hours per week "doing research" if you're TAing and taking classes, more if not.
"Doing research" could mean:
- reading papers (a never-ending task...) and following up on potentially-interesting references therein,
- investigating an analytical technique (what kind of samples do I need to collect to do Ar/Ar dating? are there any considerations I should keep in mind when collecting my samples? who has the facilities nearby to prep my samples and do the analyses? how much will it cost? is this the right technique to solve the problem I'm interested in?),
- looking at maps to plan field work (where are the roads? where are the relevant rocks? where can I go to find a particular structure? what's the best time of year to go [too hot?, snow-covered?]),
- working with your data (do I see any trends in the REE data for different sample types? is there a correlation between U concentration and U/Pb age?),
- drafting a figure to go into your thesis and/or for a publishable paper,
- writing a grant proposal to pay for thin sections or lab analyses you'd like to do,
- looking at thin sections, hand samples, field notebooks and writing rock descriptions (a pretty fundamental task for anyone in my group),
- cutting rock chips to send off to have thin sections made and finding a quality lab to do that work with a relatively quick turn-around time,
- crushing rocks and doing mineral separation or hand-picking minerals for analysis,
- learning how to do mineral separation
- writing your thesis...
Research projects that involve both original field and lab work will take longer because you've got to prepare to go to the field, do the field work, process your samples (mineral separates, thin sections, etc.), prepare for lab analyses, work in the lab, and then interpret everything. Working on samples that have already been collected or a thesis project focusing entirely on a lab-based investigation will take less time. Some people can work more efficiently, others less so. Work when you are most productive (early morning? late at night?), and do something more mindless (like hunting for papers or drafting a figure) when you're not being productive. Be sure to carve out regular, uninterrupted time to do your research each week in a place where you can minimize distractions (cleaning the toilet can wait).
I'm sure there is more I'd like to say about doing research so watch for part 2....