Sunday, October 11, 2009

Making an effective poster

Creating an effective poster is part art and part understanding the purpose of your poster. Tell a story with your poster and be prepared to have a 2-minute “elevator conversation” telling that story ready to give meeting attendees. This is your chance to highlight your work and get constructive feedback from famous scientists interested in your work! It is important to make your poster look attractive (i.e., not filled with text or data tables) and make it easy to read (can someone actually read the text from 3 feet away?).

The format
Create a 6’ x 3’ (poster sizes vary) landscape layout template in Adobe Illustrator or PowerPoint (check physical limitations on the maximum poster size that can be plotted and how much space you will be allotted at the conference – often a maximum of 36” height on plotters, sometimes you will be allowed as much as an 8’-wide poster).


The different elements of a poster

Use layers in Illustrator to make making changes to your poster less problematic. Create a layer (a box) to fill that template and lock that layer; you can choose a background color or gradient later. In a new layer, place the title of your paper (abstract) prominently at the top of the poster board to allow viewers to identify your paper easily. Include 1) the title, 2) the author(s) names, and 3) their affiliations (addresses) centered underneath. The title should be the largest type size (a minimum of 72 point type, and perhaps as much as 120 point type depending on the font), but also highlight the authors' names and address information in decreasing font sizes in case the viewer is interested in contacting you for more information. Lock that layer. Create white boxes on which you will group text and figures of related content. Put your text and figures in yet another layer on top of those boxes.


Legibility and sizing of the different elements

Prepare all figures neatly and legibly beforehand in a size sufficient to be read at a distance of 2 meters. Be sure that text and figures pulled from a .pdf, for example, will be legible and of a high resolution when printed at the final size of the poster. Paragraph and figure caption text should be at least 24 point font (0.9 cm height) and headers at least 36 point font (1.2 cm height). Use creativity by using different font sizes and styles, perhaps even color (keep in mind some people are color-blind and have a difficult time distinguishing reds and greens – opt for dark oranges and blue-green hues instead). A serif font (e.g., Times, Helvetica, Palantino) is often easier for reading the main text, and a sans-serif font (e.g., Arial, Geneva, Verdana, Tahoma, Lucidia Sans) for titles, headers, and figure labels. Left-aligned text may be easier to read than justified text.

Organize the paper on the poster board so that it is clear, orderly, and self-explanatory. You have complete freedom in displaying your information in figures, tables, text, photographs, etc. The presentation should cover the same material as the abstract. Use squares, rectangles, circles, etc. to group like ideas (the “white boxes” described above). Don't clutter your poster with too much text and keep data tables to a minimum! Include at least the text of your abstract, captions for all figures, a short geologic background, a summary of results (even prior results) and conclusions, references, and acknowledgments (any funding that supported your work, anyone who helped with analyses or field work who is not an author on your poster, etc.).


Ready to plot?

You should print your poster out on 11” x 17” paper before heading to the plotter to check for mistakes, problems with fonts or special characters, etc. When you’re ready to plot, save the file as a pdf and format the page in Adobe Acrobat to equal the size and orientation of the actual poster.

There are more suggestions at http://www.aapg.org/meetings/instructions/guide.html, but keep in mind this was written before it was common to print out a poster on a large-format plotter…

Wednesday, September 9, 2009

Journal e-alerts

E-alerts for new publications come in the form of notifications for specific journals and/or subjects to track within a given society’s or publisher’s journals. This is a great way to keep up-to-date with new publications of direct relevance to your research project. You may need to register with the service using your university e-mail address. I have e-alerts set up for these journals:

American Geophysical Union
The journals to track with AGU are “Geochemistry Geophysics Geosystems” (otherwise known as G-cubed), “Geophysical Research Letters”, “JGR (Journal of Geophysical Research) – Solid Earth”, and “Tectonics”.

Subjects in AGU’s e-alerts that are relevant to my research group include “Geochemistry”, “Geochronology”, “Mineralogy and Petrology”, “Physical Properties of Rocks”, “Structural Geology”, and “Tectonophysics”. I find the e-alert service does a very good job of choosing papers of interest to me tracking these subjects (i.e., so far, it has found every paper I wanted to download that I had independently spotted in the journal alerts).

GeoScienceWorld
Journals to monitor include the GSA’s journals listed above, “American Mineralogist”, “The Canadian Mineralogist”, “European Journal of Mineralogy”, “Geological Magazine”, “Geology”, “Geological Society of America Bulletin”, “Geosphere”, “Journal of the Geological Society”, “Lithosphere”, “Mineralogical Magazine”, “Reviews in Mineralogy and Geochemistry”.


ScienceDirect
– Choose the “Alerts” menu
Track “Chemical Geology”, “Earth and Planetary Science Letters”, “Earth-Science Reviews”, “Geochimica et Cosmochimica Acta”, “Journal of Asian Earth Sciences”, “Journal of Geodynamics”, “Journal of Structural Geology”, “Lithos”, “Physics of the Earth and Planetary Interiors”, “Precambrian Research”, and “Tectonophysics”.

IngentaConnect
Track Contributions to Mineralogy and Petrology, European Journal of Mineralogy, The Island Arc, Journal of Metamorphic Geology, and Mineralogical Magazine.

Monday, June 29, 2009

On grants

I recalled a post by Female Science Professor that deals with the issue of grants and research funding that I dug up and partially re-post below. I'm doing this because I see no need to re-invent the wheel (and because even though I've recommended her blog, I'll bet that very few students have navigated over to that site nor spent much time there), but I would add one more point to what she's written - grants are written to conduct very specific research: The budgets are detailed and MUST be spent in the way spelled out in the grant (mas o menos) unless specific permission is granted by the program officer at (in my case) the National Science Foundation. The grant itself is a contract between the Principal Investigator (me) and the funding agency - it's my job to see that research gets done in the way that I've laid it out in the grant proposal.

"Over the years I have found that even moderately well informed and apparently sane graduate students have trouble understanding some basic issues involving grants and research. These issues include:

- Grants have start and end dates. They do not go on forever. This might be confusing in part because PIs can get no-cost extensions for a year (or two), so grants may have a longer life than their original start and end dates might suggest.

- Grants have budgets. They do not contain an infinite amount of money. Even when some students are told exactly how much is available for a certain activity, they seem to think that somehow there will be more and/or they are surprised and upset when the money runs out.

- The total $ amount of a grant is not equivalent to the amount the PI has available for the research. A substantial amount of the money in a grant goes to the university, not to the PI.

- Grant funds for grad students may be much more than just salary. Some institutions also require that the PI pay tuition and benefits. Grad students may not be highly paid, but they may be a significant component of a grant budget.

- Proposal budgets for most proposals can't be too high. PIs develop a sense for what the funding agency/program would consider to be reasonable vs. too high. For this reason, PIs have to do some delicate balancing between grad stipends (+ related costs) and research activity expenses.

- Students supported on a grant may start their graduate studies before or during a particular grant's lifetime. It may not seem fair to the student, but this timing relative to a grant's lifetime may affect the advisor's stress level about doing the research on a particular time scale, and that stress level may be transmitted to the student.

- The time between proposal submission and notification of the proposal's fate may be long.

- Some university accounting systems are so bizarre and complicated that it can be difficult for a PI to know exactly how much money is left in a grant. For example, it can be difficult to determine what is encumbered and what is not, and whether all outstanding invoices have been paid. There have been times when the actual amount remaining in one of my grants has been off by tens of thousands of $$ from what the accounting tables indicated. This is particularly stressful near the end of a grant. Budget stress level may fluctuate depending on when PIs look at accounting statements. A graduate student might perceive this as erratic behavior in an advisor.

- In some cases, departments/institutions make new policies that cost PIs money in existing grants even if this money was not originally budgeted. For example, my department occasionally mandates that graduate students receive raises that are effective immediately, even for existing grants. I supported the raises, but the money has to come from somewhere in finite budgets. This means less money for research activities.

Most of us could do a much better job of explaining the proposal/grant system to our students, but I think that it is inevitable that when issues of money, time, and stress are involved, as they are during a typical graduate program in Science, there are going to be difficult situations. I also think that grant management is one of those things that you have to experience yourself before you can really understand what is involved.

Maybe some computer science person will create a video game - SimGrant. Advisors can give it to students and postdocs to play and see how they do with the various decisions involved in writing transformative proposals, keeping various members of a research group funded, and dealing with kafkaesque accounting situations. I think this would be great, but the only problem is that the game couldn't use a proposal submission system like grants.gov or else no one would play, and those forced to play would end up shooting their computers."

On student-advisor perceptions

A recent post on the Chronicle of Higher Education relates to my last blog entry about what professors actually do. I've reproduced the article below because it goes beyond just what professors DO and delves into the student-advisor relationship and expectations. It also touches on graduate student pay - something that is normal for PhD students at research universities (where there is institutional support) but that relies on grant support at other institutions (a topic that I will no doubt blog about in the future). For now, I will say that my expectations of graduate students are the same whether or not I am able to pay a student from a grant (though I have more and firmer expectations of graduate students that I am supporting) - ultimately a research project is the grad student's project, not mine, and success or failure lies quite firmly in grad student's hands. I hope this isn’t true, but sometimes I wonder if graduate students doing research with me think they are doing me a series of favors – if so, that perception needs to change because (and I hope this doesn’t sound too harsh) I could do the work much more efficiently on my own. Grad students are research trainees and my job as an advisor is to help grad students do their best possible work, and if they’re successful, go on to a Ph.D. program.

Planet of the Professors

Why do doctoral students and their advisers have such different views about the graduate-research experience?

By FEMALE SCIENCE PROFESSOR

"It is well known that professors and undergraduates exist on different planets with respect to their expectations and views about educational issues (like grades). That may relate to the difference in their ages, or in the intensity of their academic focus. Those factors are less pronounced in the relationships between professors and graduate students, who, nonetheless, also exist on different planets and have different views about the graduate-research experience.

For example, some graduate students, including research assistants, believe that they are exploited, employed at low wages to work long hours accomplishing various tasks that benefit the research endeavors of an adviser who doesn't really care about them and whose own "work" may not be apparent to the student. I don't doubt that there are cases in which that description applies to a particular professor, but it's not an accurate description of the typical graduate experience, at least not in the physical sciences with which I am familiar. It's an incomplete and inaccurate description for at least three reasons.

1) Not cheap labor. Graduate-student stipends may be low compared with other employment options, particularly in science and engineering fields, but students are not "cheap" labor for advisers. When salary, benefits, and, in some cases, tuition are factored in, graduate students cost a lot, and most or all of that cost may come out of the adviser's research grants.

Graduate students don't see those additional costs; they just see their modest salaries. In fact, graduate-student salaries and their related costs may largely consume grants. Expenses for the actual research may be the smallest component of the budget.

From the adviser's point of view, therefore, students are getting paid a decent (living) wage while working toward their (tuition-free) graduate degree, and doing interesting research in the process. A student, however, may focus on how hard the work is for not a lot of money in a stressful environment that may be populated by some intense and/or difficult people. If the student has or wants to have a family, the stipend may seem even smaller. Financial pressures may be a source of discontent on both sides because each has a different perspective on the "cost" of the research.

2) Training time. Most students do not arrive in graduate school knowing how to do research. It takes time to learn. Unlike most postdocs (who have already successfully attained a Ph.D.), some graduate students never learn.

If the training time and the uncertainty that a graduate student will do well in research are factored in, one could reasonably conclude that using students is an extremely inefficient way for an adviser to conduct a research program. A student may need time to adjust to a new environment in which expectations and skills are different from those in a typical undergraduate program. At first, the student may be taken aback by the culture of criticism, discussion, and debate of graduate seminars, research-group meetings, and research presentations.

Some students can handle all of that and some can't — no matter how smart they are. In fact, from the professor's point of view, the most efficient way to conduct a research program would be to hire nonstudent workers who are already trained and who would stay in the job on a long-term basis rather than leaving just at the point when they finally know what they are doing. That would be more efficient even than hiring postdocs who only stay a couple of years and then move on.

That would be fine if efficiency were the only thing that mattered, but a completely efficient scenario of trained workers doesn't sound appealing to me, nor does working in isolation. Most of us science professors aren't here to manage a group of technicians, or even to work alone.

I do like to get results, and my fondest wish is that students who are paid on a grant will get some results, for their sake and mine. But I also expect a bit of inefficiency along the way. By results, I mean data, a talk, a paper, or a new grant proposal. We need such results to keep the interconnected system of research and graduate education functioning. Advisers may be more focused on certain important deadlines (including those involving tenure and promotion decisions) than students and may transmit (without much explanation) their stress and sense of urgency to their students.

In that context, the concept of efficiency doesn't capture the most valuable outcomes of teaching students how to do research, whether the teaching involves direct instruction or letting a student loose on a problem. The most valuable outcomes are discovery, insight, and inspiration (and having fun in the process). Can those be taught? Years of advising lead me to an unsatisfying answer: Sometimes.

3) The way we work. Most students, even quite senior graduate students, have little idea of what faculty members do all day. I have heard students complain that they do all the work while their advisers do nothing. I am always skeptical that a professor managing a research group at a research university is really doing nothing all day.

There are some periods of time, including entire academic terms, when I don't have time to do any actual research myself. I suppose in some respects I am doing nothing during those times — nothing other than teaching, serving on committees, reviewing manuscripts and proposals, writing manuscripts and proposals (an activity I count as research), dealing with budgets and accountants involved in grants management, writing letters of recommendation, attending conferences (preparing and giving talks), and a host of other random things that seem to pop up every day and consume my time.

When doctoral students graduate and become faculty members, perhaps after doing postdoctoral research, a common refrain is "I didn't know I would have to spend so much time doing ... [fill in blank with administrative or advising task]."

We advisers could do a better job of teaching our students exactly what professors really do. That might result in less dissatisfaction at a perceived imbalance in workload between students and their advisers. Students should also be more aware of the environment in which they are working, although some of what is involved in being a professor and adviser of a research group is difficult to anticipate or understand until you actually do it.

I like having a research group, and I like working with students. I enjoy doing research, discovering things, developing new ideas, and communicating the results, and I like trying to teach others how to do all of that as well. It takes a lot of time and energy for both adviser and student, even when things go well and even when the student thinks he or she is doing most of the work.

Some advisers are more involved with their students' research and education than others. Some leave a lot of the day-to-day advising to other members of a research group. Some advisers would prefer to have more "workers" and fewer students, especially advisers who have had a lot of negative experiences with unproductive graduate students. It can be extremely frustrating and demoralizing to (try to) work with a dysfunctional grad student.

I think, however, that most of us advisers have enough positive experiences to balance out the negative ones — even if the negative ones are rather spectacular and make for better stories.

By working with many different students over the years, we can achieve a reasonably upbeat perspective on the overall experience. In contrast, most graduate students work with only one or two advisers, so a single bad experience can be crushing.

Most of us science-professor types at research universities advise graduate students, for better or worse. Sometimes it works out and sometimes it doesn't. Successful adviser-student interactions require of both parties a balance between being patient and being assertive, keeping overt complaining to a minimum, and realizing that what seems like insensitive or strange behavior or laziness in the other might have a reasonable explanation.

Graduate students and professors alike are continually amazed at each other's mystifying behavior, so it is not surprising that there are gaps in experiences and expectations between them. But maybe it's not surprising that these misunderstandings exist: My colleagues and I often don't understand each other, either.”

Saturday, April 25, 2009

Editing marks


Today I'm reading an M.S. thesis and two thesis proposals and noticing some problems in common. Some problems relate to formatting and style, some problems result (despite my pleas) from not having run a spell and grammar check, but mostly because it takes time to learn how to write scientifically. I think many problems would be caught by simply flipping through the paper to see how it looks before submitting (why are all my figures blue?). The formatting issues can be dealt with by following instructions for publication in a professional journal (where you will see a reminder to spell check...is anyone getting this thing about spell-checking?) or looking at a copy of a published paper. I believe the goal for every M.S. thesis should be to get it published in a peer-reviewed journal, so you should write as if you're getting your thesis ready to publish. Every journal has its own quirks in formatting (usually with regard to the references), but the main text should follow the same general rules. I edit accordingly. Hence, this post with notes about editing marks and some examples.

Editing and professional proofreading marks are similar with the main difference that editing marks are done in the line of text and professional proofreaders write the corrections in the margin. Editing marks are fairly intuitive; I had to learn what the professional proofreader's marks meant when I submitted my first manuscript for publication to Geochimica et Cosmochimica Acta in 1998.

Tuesday, April 14, 2009

How to prepare for field work and what to pack

We brainstormed today on how to plan/prepare and pack for field work using a difficult field area as an example – the Indian Himalaya. Keep in mind you should travel as lightly as possible and this must all fit into a backpacking pack and one Action Packer (filled with the consumables). The results of the brainstorming session form a check list for the field party:

Before you go (well in advance):
Plan the route: Where is the relevant geology? Do you need permission to access certain areas? Is it safe to travel in those regions? Are there access roads or will it require backpacking, horses, or rafting?
Check road conditions, weather conditions
Check for clothes appropriate for weather/local customs (it can be in the 80s during the day and in the 30s at night; Women: maybe no shorts or tank tops)
Compile maps: topographic, geological and road maps
Choose scientific papers to reference in the field
Assemble aerial photographs and/or satellite images (if available or from Google Earth)
Buy emergency medical/evacuation insurance
Current passport and Indian visa
Update vaccinations (you may not be vaccinated completely for Hepatitis and be sure your Tetanus is up-to-date)
Compile contact info, flight info, relevant phone numbers (for airlines, hotels, etc.)
Check travel advisories with the U.S. Department of State
Arrange a GSM cell phone (with international use activated or unlocked for an Indian SIM card)
Call credit card companies to notify that you’ll be traveling and to accept those charges
Register your travel plan with U.S. embassy in New Delhi
Order/purchase equipment or supplies (see below)

What else to pack:

Geology-related gear:
Brunton
“Rite in the Rain” field book (with any necessary IUGS diagrams, etc. you might want in the field taped inside)
Field pouch (to carry field book, Sharpies, chisels…)
Pens and pencils, colored pencils
Sharpies (several)
Sample bags – cloth or Ziploc freezer bags (quartz and gallon size)
Ruler/scale?
Field belt (for carrying hammer, field pouch, etc.)
Spare heavy duty duffle bag(s) for additional rocks
Hand lens on cord
4-lb. sledgehammer “crack hammer” with a long handle (pack this in checked baggage to be easily accessed by TSA agents)
Chisels (at least 2)
Backpack (day pack and backpacking pack if trekking overnight)
Binoculars/monocular?
Clipboard

Things that need batteries or charging:
Camera, 1+ Gb memory card(s), and batteries
GPS and batteries
Laptop computer?
AC power inverter for cigarette lighter charging
Chargers (if necessary for camera, phone, GPS, computer, etc.)
All necessary cables (data [USB] and power cables for camera, phone, GPS, computer…)
Satellite phone (unnecessary unless in very remote regions of Tibet)
Ethernet cable
Headlamp and batteries
Extra batteries
Instruction manuals for unfamiliar electronics
Electric plug adapter appropriate for the country
Alarm clock or watch with an alarm

Other stuff:
Laundry cord or rope
Action Packer(s) for rock transport, and name/address labels (bring copies) for inside and out
Tent
TSA locks for checked baggage
Sleeping bag
Sleeping pad/Thermarest
Sleep sheet (for funky Indian “hotels”)
Cash, credit card(s), ATM card
Several extra copies (~10) of both your passport photo/info page and Indian visa (must be surrendered for travel permits)
Secure (zip-up) wallet for travel documents and cash, etc.
Sunglasses and lanyard
Sunblock (very important)
Duct tape (at least one big roll)
Hat
Hiking boots
Tevas or Chacos (to air out the feet, river crossings, showering)
Zip-off pants
Quick-dry, lightweight clothes
Spare Ziploc bags
Swiss Army knife (in checked luggage)
Bathing suit
Hiking socks
Rainjacket
Towel
Toilet paper (no joke, bring a roll)
Bandana (for exhaust/dust)
Good, long paperback book(s) that you can leave behind
Lonely Planet guide (or similar)
Phrasebook or translation dictionary (Hindi and Ladakhi?)

Cooking/eating/drinking:
Cup/mug
Nalgene(s)
Clif or Power bars and/or dried fruit
Lemonade mix so water doesn’t get boring (encourages you to drink) like Crystal Light “On the Go” packets
Stove that uses available fuel like the Primus Gravity MF II
Fuel cannister and coffee filters for dirty fuel
Pot for cooking
Bowl/plate
Tupperware container for carrying lunch?
Utensils
Matches
Plastic bottle of something alcoholic (for cleaning wounds, of course)

Medications and health-related items:
Iodine and dropper or water filter (filters may clog with rock powder in glacial run-off)
Toiletries
Anti-inflammatories like Advil or Aleve
Painkillers like Tylenol
Antibiotics (Cipro)
Laxative (for after days of dal, dal, and more dal)
Any regular medications
Altitude sickness pills like Diamox/Acetazolamide
Anti-malarial medication
First aid kit (bandaids, alcohol wipes, antibiotic cream, moleskin…)

Once there:
Apply for travel permits to access restricted areas
Buy a SIM card for GSM phone, phone card with minutes
Buy propane (or other available gas for stove)
Buy food and case of bottled water
Arrange car and driver

Then go do it!
Collect lots of structural data, take lots of notes, take more photos than you think are necessary, go ahead and collect that sample you're not sure you'll need, orient every sample that you can, label every. single. piece. of. rock. with a sample number (and the sample bag!), mark GPS waypoints frequently, and have fun.

Friday, April 3, 2009


It's been a while since I've added anything to the blog and until I meet a couple of pressing deadlines this week, you'll have to wait a bit longer. For now, a topic that has come up in previous posts dealt with how to address faculty; I found this comic on a web site that deals with issues related to being a graduate student - Piled Higher and Deeper. Enjoy!